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Abstract. We have extended the high-temperature specific heat series of the three-dimensional 
spin.$ [sing model to O(vz6)). Analysis of the new series gives a = 0.101 *Oo.004. 

In an earlier paper [ I ] ,  we gave series to order uZ2 for the high-temperature expansion of 
the zero-field partition function of the three-dimensional Ising model. More precisely, we 
gave the coefficients a,, n = 0,22, defined by 

Z = 2[cosh(J/kT)13@(v) with @(U) = ~ a , v " .  
n 

The series were obtained by the finite-lattice method. One difficulty with the finite-lattice 
method for this problem is its voracious appetite for computer memory. Our earlier 
computation, in fact, calculated the series to two further terms-to order vX-but due 
t o  addressing limitations, we were unable to retain the intermediate information. This 
particular calculation requires 2.08 GB of memory, and we were unable to address more 
than 2 GB, due to operating system limitations. We have now been able to rerun our 
program under a different operating system that permits us to address this large address 
space. 

The program was run on an E M  3090/4005 with 500 MB of memory and 2 GB of 
extended storage-a slower type of memory. The use of the M V S  operating system allowed 
the large address space to be used. Even so, two-byte integers were used, and the program 
was run twice modulo two different primes. The results were combined using the Chinese 
remainder theorem, and provided the least significant digits of the new coefficients; the 
most significant digits were obtained by differential approximants. The final results were 
then compared by running with a third prime. Each run took 150 hours. 

As a result, we have obtained two further non-zero terms (the partition function being 
an even function has vanishing odd-order coefficients). We have also obtained the six most 
significant digits of the 0 ( u z 8 )  coefficient, by the method of differential approximants. In 
our earlier paper, we obtained the coefficient of the O(u") coefficient by this method and 
claimed the coefficient to be a% = 27 337 x lo7. The present calculation gives the coefficient 
as a24 = 273374 177222, verifying our prediction. The subsequent coefficients are found 
to be aZ6 = 4 539 862959 852 and a28 = 7 474 452 x lo7 h5 x lo', where the last coefficient 
is obtained by differential approximants. (The approximate coefficient was not used in the 
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subsequent analysis, as differential approximants require more accurate coefficients. It is 
nevertheless useful for ratio-type methods of analysis.) 

As we were completing this work, we received a preprint 121 in which a variant of the 
finite-lattice method, using helical boundary conditions, was used to obtain one further 
coefficient than we had previously obtained. This work also confirmed our predicted 
coefficient, and agrees with our exact coefficient. (Note that they give the free-energy 
series and we give the partition function series). They also predicted U26- and our exact 
coefficient confirms their predicted value. 

The series is now, for 
the fist time, sufficiently long that the method of differential approximants can be used 
with some confidence. For our initial analysis, we used unbiased approximants, but for 
maximum precision we used biased approximants. This requires a knowledge of the critical 
temperature which has been accurately estimated from the more readily analysed high- 
temperature susceptibility series, as well as from a variety of Monte Carlo estimates, The 
series estimates are reviewed in [3] and we use the best estimate given there, U, = 0.218093, 
which is in good agreement with the most recent high-precision Monte Carlo estimate of 
~ , = 0 . 2 1 8 0 9 9 2 f 0 . 0 0 0 0 0 2 6  [41. 

Our method of analysis is fully described in [5], and provides a weighted mean of critical 
exponent estimates from inhomogeneous first-and second-order differential approximants, 
with one estimate obtained for each order of the series. Our analysis was carried out on the 
coefficients of the partition function itself. Our unbiased estimates are 
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We have analysed the new series using several methods. 

U," = 0.047 56 f 0.00003 and 2 - CY = 1.905 f 0.016 with K = I 

u~=0 .04756 i0 .00002and2-a=  1.897f0.012 with K = 2 .  

In the above, K = 1,2 refers to first- and second-order differential approximants. 
respectively. The unbiased estimates are seen to be in excellent agreement with the 
susceptibility series estimate U: = 0.0475646, while an estimate of a = 0.10 f 0.01 
can be made. A biased analysis yields the following estimate: 

2 - a = 1.899 & 0.004 K = 1 a n d 2 - a = 1 . 9 0 0 ~ 0 . 0 0 6  K = 2 .  

Thus, we find from this analysis a = 0.101 k 0.004. This is substantially more precise 
than OUT earlier analysis, using two fewer series coefficients, of a = 0.104 f 0.018. It is 
consistent with the analysis of [21 who find a = 0.104 f 0.004, though, as can be seen, 
we favour a rather lower value. Note that second-order differential approximants implicitly 
take correction-to-scaling terms into account. The agreement between first- and second- 
order differential approximants suggests that correction-to-scaling exponents are weak. A 
subsequent analysis provides numerical confirmation of this. 

Ratio techniques can also be used with this series. We have analysed the free-energy 
series by a variety of extrapolation methods, based on the observation that if the free-energy 
W / k T  - A(l - u2/u~)"-".  then the ratio of successive coefficients in the series expansion 
of W f k T  behaves like 

with higher-order corrections from correction-to-scaling exponents, as well as corrections 
due to analytic terms. In any event, the sequence of ratios can obviously be rearranged to 



The high-iemperature specijic heat exponent of the 3D Ising model 8009 

give a sequence that will converge to 01. Neville extrapolation (which takes into account 
only analytic correction terms), gives 01 = 0.103 k 0.006. Other extrapolation methods, 
such as Levin's u-transform and Brezinski's 8-algorithm, are less accurate, allowing only 
the estimate a = 0.10 * 0.03. 

In our previous analysis, we also studied the amplitude of the 'correction-to-scaling' 
term ng, where the specific heat is defined to have the scaling form C - Alrl-"[l + 
agJtJ8 + qJfJ  + . . , I ,  where t = (T  - T')/T and e rx 0.52 [6]. In 171, i t  was argued 
that Q should be negative and our earlier analysis [ I ]  seemed to confirm this, in that 
we found as E -0.04. This can be seen from the behaviour of the ratios of successive 
coefficients as follows. We first write C(u) = CC,,~", since the expansion we obtain is in 
terms of the usual high-temperature variable U = tanh(J/kT). Note that, to leading order, 
t = (T - T c ) / c  = B(u - uc)/u,, where B is a positive constant. It, therefore, follows that 
the correction-to-scaling amplitude of the specific-heat series expanded in the variable u2 
should also be of negative sign. Writing 

C(u) = ~ C ~ U "  =A( l  - u * / u ~ ) - " ( l + b ( l - ~ ~ / u ~ ) ~ + . . . )  

it follows that 

Hence 

Taking e E 0.1 and 0 % 0.5, it follows that the above equation can be rewritten as 

01 - 1 1.28..b 

Hence, we find that 

1.2K.b 
no (2.: - 1) n + 1 - 01 + - 

This means that if b c; 0, estimators of 01, given by the left-hand side of the above equation, 
should approach 01 from below. In fact, we find the approach to be from above, but a simple 
n-shift of 1 makes the approach change to an approach from below! Even an analysis taking 
into account the analytic correction term does not alter this behaviour. To be more precise, 
we have repeated the above analysis with an additional analytic correction-to-scaling term 
present and found that the numerical value of b changes sign with an n-shift of just 1. In 
all cases. the estimate of b is numerically rather small and we conclude that this analysis is 
not sensitive enough to distinguish b from zero. A similar conclusion, based on a somewhat 
different analysis, was obtained in 121. 

Our estimate of 01 is rather lower than the field-theory estimate [8] of 01 = 0.1 10k0.0045, 
but the field-theory and series estimates are both (separately) consistent with the hyperscaling 
relation dw = 2 - 0 1 .  Our best series estimate of U = 0.6322$: implies 01 = 0 . 1 0 4 ~ ~ ~ $ ,  
while the best field-theory estimate [6] is U = 0.630, which implies e = 0.1 10, a value at 
the centre of the field-theory estimates. 

We summarize the various estimates of 01 in table I .  
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Table 1. Summxy of U estimates. 

a estimate Method Reference 

0.101(4) series this work 
0.104(4) series VI 
0.1 lOO(45) field theory 181 

0.110 field theory and hyperscaling [61 
0. 104?::E series and hyperscaling 151 
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